EFFECTIVE CONES OF MODULI SPACES OF STABLE RATIONAL CURVES

Ana-Maria Castravet (Versailles) with Antonio Laface, Jenia Tevelev and Luca Ugaglia

June 2021

Richmond Geometry Festival

MODULI SPACES OF STABLE RATIONAL CURVES

•
$$\mathsf{M}_{0,n} = \left\{ \begin{smallmatrix} p_1, \dots, p_n \in \mathbb{P}^1 \\ p_i \neq p_j \end{smallmatrix} \right\} / \mathsf{PGL}_2$$

• $\mathsf{M}_{0,3} = \mathsf{pt} \ (\mathsf{send} \ p_1, p_2, p_3 \to 0, 1, \infty)$

•
$$\mathsf{M}_{0,4} = \mathbb{P}^1 \setminus \{0,1,\infty\}$$
 (via cross-ratio)

- $\overline{\mathsf{M}}_{0,4} = \mathbb{P}^1$
- $\overline{M}_{0,n}$ functorial compactification

The moduli space $M_{0,n}$

- A pointed rational stable curve $(C, p_1, ..., p_n)$: • an at worst nodal curve C with $p_a(C) = 0$
 - smooth, distinct points p_1, \ldots, p_n ,
 - $\omega_C(p_1 + \ldots + p_n)$ is ample

The moduli space $M_{0,n}$

A pointed rational stable curve (C, p₁,..., p_n):
an at worst nodal curve C with p_a(C) = 0
smooth, distinct points p₁,..., p_n,
ω_C(p₁ + ... + p_n) is ample
If C' is a component of C, then

 $\omega_{C|C'} = \omega_{C'} (nodes on C') = \mathcal{O}(-2)(\#nodes)$

The moduli space $\overline{\mathrm{M}}_{0,n}$

A pointed rational stable curve (C, p_1, \ldots, p_n) : • an at worst nodal curve C with $p_a(C) = 0$ • smooth, distinct points p_1, \ldots, p_n , • $\omega_C(p_1 + \ldots + p_n)$ is ample If C' is a component of C, then $\omega_{C|C'} = \omega_{C'} (\text{nodes on } C') = \mathcal{O}(-2)(\#\text{nodes})$ Boundary divisors $I \sqcup I^c = \{1, \ldots, n\}$ $|I|, |I^{c}| \geq 2$

• (Kapranov models) $\overline{M}_{0,n} = \dots \operatorname{Bl}_{\binom{n-1}{3}} \operatorname{Bl}_{\binom{n-1}{2}} \operatorname{Bl}_{n-1} \mathbb{P}^{n-3}$ (blow-up n-1 points, all lines, planes,... spanned by them)

- (Kapranov models) $\overline{M}_{0,n} = \dots \operatorname{Bl}_{\binom{n-1}{3}} \operatorname{Bl}_{\binom{n-1}{2}} \operatorname{Bl}_{n-1} \mathbb{P}^{n-3}$ (blow-up n-1 points, all lines, planes,... spanned by them)
- $\overline{M}_{0,5} = dP_5$, del Pezzo of degree 5 (-K is ample)

- (Kapranov models) M
 {0,n} = ... Bl{(n-1}
 ₃) Bl_{(n-1} ℙⁿ⁻³
 (blow-up n − 1 points, all lines, planes,... spanned by them)
- $\overline{M}_{0,5} = dP_5$, del Pezzo of degree 5 (-K is ample)
- $\overline{M}_{0,6}$ = blow-up of the Segre cubic at the 10 nodes (-K is big and nef)

- (Kapranov models) $\overline{M}_{0,n} = \dots \operatorname{Bl}_{\binom{n-1}{3}} \operatorname{Bl}_{\binom{n-1}{2}} \operatorname{Bl}_{n-1} \mathbb{P}^{n-3}$ (blow-up n-1 points, all lines, planes,... spanned by them)
- $\overline{M}_{0,5} = dP_5$, del Pezzo of degree 5 (-K is ample)
- M
 _{0,6} = blow-up of the Segre cubic at the 10 nodes (−K is big and nef)
- $\overline{M}_{0,n}$, $n \ge 8$: -K not pseudo-effective

EFFECTIVE CONES

X normal projective variety

 $\mathbb{N}^1(X) = \operatorname{Pic}(X)/_{\equiv}$ $(D \equiv D' \Leftrightarrow D \cdot C = D' \cdot C \text{ for all curves } C \subseteq X)$

 $\overline{\mathsf{Eff}}(X) = \overline{\{\sum a_i D_i \mid a_i \in \mathbb{Q}_{\geq 0}, \ D_i \ \mathsf{effective} \ \}} \subseteq \mathsf{N}^1(X) \otimes_{\mathbb{Z}} \mathbb{R}$

EFFECTIVE CONES

X normal projective variety

$$\begin{split} \mathsf{N}^{1}(X) &= \mathsf{Pic}(X)/_{\equiv} \quad (D \equiv D' \Leftrightarrow D \cdot C = D' \cdot C \text{ for all curves } C \subseteq X) \\ \overline{\mathsf{Eff}}(X) &= \overline{\{\sum a_{i} D_{i} \mid a_{i} \in \mathbb{Q}_{\geq 0}, \ D_{i} \text{ effective }\}} \subseteq \mathsf{N}^{1}(X) \otimes_{\mathbb{Z}} \mathbb{R} \end{split}$$

 $\mathcal{C} \subseteq \mathbb{R}^n$ cone

A ray $R = \mathbb{R}_{\geq 0}\{v\}$ of C is extremal if

 $\textit{v} = \textit{v}_1 + \textit{v}_2, ~\textit{v}_1, \textit{v}_2 \in \mathcal{C} \Longrightarrow \textit{v}_1, \textit{v}_2 \in \textit{R}$

• Every boundary divisor is contracted by a Kapranov map $\overline{M}_{0,n} \to \mathbb{P}^{n-3}$ and generates an extremal ray of $\overline{\text{Eff}}(\overline{M}_{0,n})$

- Every boundary divisor is contracted by a Kapranov map $\overline{\mathsf{M}}_{0,n} \to \mathbb{P}^{n-3}$ and generates an extremal ray of $\overline{\mathrm{Eff}}(\overline{\mathsf{M}}_{0,n})$
- $\overline{\text{Eff}}(\overline{M}_{0,5})$ is generated by the 10 boundary divisors (-1 curves)

- Every boundary divisor is contracted by a Kapranov map $\overline{\mathsf{M}}_{0,n} \to \mathbb{P}^{n-3}$ and generates an extremal ray of $\overline{\mathsf{Eff}}(\overline{\mathsf{M}}_{0,n})$
- $\overline{\text{Eff}}(\overline{M}_{0,5})$ is generated by the 10 boundary divisors (-1 curves)
- $\overline{Eff}(\overline{M}_{0,6})$ is generated by boundary and Keel–Vermeire divisors (Hassett–Tschinkel 2002)

- Every boundary divisor is contracted by a Kapranov map $\overline{M}_{0,n} \to \mathbb{P}^{n-3}$ and generates an extremal ray of $\overline{\text{Eff}}(\overline{M}_{0,n})$
- $\overline{\text{Eff}}(\overline{M}_{0,5})$ is generated by the 10 boundary divisors (-1 curves)
- Eff($\overline{M}_{0,6}$) is generated by boundary and Keel–Vermeire divisors (Hassett–Tschinkel 2002)
- For n ≥ 6, Eff(M_{0,n}) has many extremal rays, generated by hypertree divisors, contractible by birational contractions (C.–Tevelev 2013)

- Every boundary divisor is contracted by a Kapranov map $\overline{M}_{0,n} \to \mathbb{P}^{n-3}$ and generates an extremal ray of $\overline{\text{Eff}}(\overline{M}_{0,n})$
- $\overline{\text{Eff}}(\overline{M}_{0,5})$ is generated by the 10 boundary divisors (-1 curves)
- Eff($\overline{M}_{0,6}$) is generated by boundary and Keel–Vermeire divisors (Hassett–Tschinkel 2002)
- For n ≥ 6, Eff(M_{0,n}) has many extremal rays, generated by hypertree divisors, contractible by birational contractions (C.–Tevelev 2013)
- More extremal divisors for $n \ge 7$ (Opie 2016, based on Chen–Coskun 2014, Doran–Giansiracusa–Jensen 2017)

THEOREM (C.-LAFACE-TEVELEV-UGAGLIA 2020)

The cone $\overline{Eff}(\overline{M}_{0,n})$ is not polyhedral for $n \ge 10$, both in characteristic 0 and in characteristic p, for an infinite set of primes p of positive density (including all primes up to 2000).

THEOREM (C.-LAFACE-TEVELEV-UGAGLIA 2020)

The cone $\overline{Eff}(\overline{M}_{0,n})$ is not polyhedral for $n \ge 10$, both in characteristic 0 and in characteristic p, for an infinite set of primes p of positive density (including all primes up to 2000).

RATIONAL CONTRACTIONS

DEFINITION

A rational contraction $X \dashrightarrow Y$ between \mathbb{Q} -factorial, normal projective varieties, is a rational map that can be decomposed into a sequence of

• small Q-factorial modifications,

• surjective morphisms between Q-factorial varieties.

RATIONAL CONTRACTIONS

DEFINITION

A rational contraction $X \dashrightarrow Y$ between Q-factorial, normal projective varieties, is a rational map that can be decomposed into a sequence of

- small Q-factorial modifications,
- surjective morphisms between Q-factorial varieties.

THEOREM

Let $X \dashrightarrow Y$ be a rational contraction. If X has any of these properties then Y does as well:

- Mori Dream Space (Keel-Hu 2000, Okawa 2016)
- (rational) polyhedral effective cone (BDPP 2013)

$\overline{\mathrm{M}}_{0,n}$ and blow-ups of toric varieties

PHILOSOPHY (FULTON)

 $\overline{M}_{0,n}$ is similar to a toric variety.

 $\mathrm{M}_{0,n}$ and blow-ups of toric varieties

PHILOSOPHY (FULTON)

 $\overline{M}_{0,n}$ is similar to a toric variety.

Not quite true. Instead, $\overline{M}_{0,n}$ is similar to a blown up toric variety:

 $\mathrm{M}_{0,n}$ and blow-ups of toric varieties

PHILOSOPHY (FULTON)

 $\overline{M}_{0,n}$ is similar to a toric variety.

Not quite true. Instead, $\overline{M}_{0,n}$ is similar to a blown up toric variety:

THEOREM (C.-TEVELEV 2015)

There are rational contractions

$$BI_e \overline{LM}_{0,n+1} \dashrightarrow \overline{M}_{0,n} \to BI_e \overline{LM}_{0,n},$$

where $\overline{LM}_{0,n}$ is the Losev-Manin moduli space of dimension n-3, e = identity point of the open torus $\mathbb{G}_m^{n-3} \subseteq \overline{LM}_{0,n}$.

 $\mathrm{M}_{0,n}$ and blow-ups of toric varieties

PHILOSOPHY (FULTON)

 $\overline{M}_{0,n}$ is similar to a toric variety.

Not quite true. Instead, $\overline{M}_{0,n}$ is similar to a blown up toric variety:

THEOREM (C.-TEVELEV 2015)

There are rational contractions

$$BI_e \overline{LM}_{0,n+1} \dashrightarrow \overline{M}_{0,n} \to BI_e \overline{LM}_{0,n},$$

where $\overline{LM}_{0,n}$ is the Losev-Manin moduli space of dimension n-3, e = identity point of the open torus $\mathbb{G}_m^{n-3} \subseteq \overline{LM}_{0,n}$.

Kapranov description: $\overline{\text{LM}}_{0,n} = \dots \text{Bl}_{\binom{n-2}{3}} \text{Bl}_{\binom{n-2}{2}} \text{Bl}_{n-2} \mathbb{P}^{n-3}$ (blow-up n-2 points, all lines, planes,... spanned by them)

The Losev-Manin moduli space $\overline{\mathrm{LM}}_{0,n}$

The Losev-Manin moduli space $\overline{\text{LM}}_{0,n}$ is the Hassett moduli space of stable rational curves with *n* markings and weights $1, 1, \epsilon, \ldots, \epsilon$.

Universal blown up toric variety

THEOREM

X projective $\mathbb Q\text{-}\mathsf{factorial}$ toric variety. For $n\gg 0$

- there exists a toric rational contraction $\overline{LM}_{0,n} \dashrightarrow X$
- there exists a rational contraction $Bl_e \overline{LM}_{0,n} \dashrightarrow Bl_e X$

Universal blown up toric variety

THEOREM

X projective \mathbb{Q} -factorial toric variety. For $n \gg 0$

- there exists a toric rational contraction $\overline{LM}_{0,n} \dashrightarrow X$
- there exists a rational contraction $Bl_e \overline{LM}_{0,n} \dashrightarrow Bl_e X$

Corollary (C.-Tevelev, 2015)

 $\overline{M}_{0,n}$ is not a MDS in characteristic 0 for $n \gg 0$. There exists a rational contraction

$$\overline{M}_{0,n} \dashrightarrow Bl_e \mathbb{P}(a, b, c)$$

for some a, b, c such that $Bl_e \mathbb{P}(a, b, c)$ has a nef but not semi-ample divisor (Goto–Nishida–Watanabe 1994).

Remark

This argument cannot work in characteristic p, where, by Artin's contractibility criterion, a nef divisor on $Bl_e \mathbb{P}(a, b, c)$ is semi-ample.

THEOREM (C.-LAFACE-TEVELEV-UGAGLIA 2020)

There exist projective toric surfaces \mathbb{P}_{Δ} , given by good polygons Δ , such that $\overline{Eff}(Bl_e \mathbb{P}_{\Delta})$ is not polyhedral in characteristic 0.

For some of these toric surfaces, $\overline{Eff}(Bl_e \mathbb{P}_{\Delta})$ is not polyhedral in characteristic p for an infinite set of primes p of positive density.

THEOREM (C.-LAFACE-TEVELEV-UGAGLIA 2020)

There exist projective toric surfaces \mathbb{P}_{Δ} , given by good polygons Δ , such that $\overline{Eff}(Bl_e \mathbb{P}_{\Delta})$ is not polyhedral in characteristic 0.

For some of these toric surfaces, $\overline{Eff}(Bl_e \mathbb{P}_{\Delta})$ is not polyhedral in characteristic p for an infinite set of primes p of positive density.

COROLLARY

For $n \ge 10$, the space $\overline{M}_{0,n}$ is not a MDS both in characteristic 0 and in characteristic p for an infinite set of primes of positive density, including all primes up to 2000.

EXAMPLE OF A GOOD POLYGON

EXAMPLE OF A GOOD POLYGON

There is a rational contraction $\overline{\mathsf{M}}_{0,10} \to \mathsf{Bl}_e \overline{\mathsf{LM}}_{0,10} \dashrightarrow \mathsf{Bl}_e \mathbb{P}_\Delta$:

Red \rightarrow normal fan of Δ

Black \rightarrow projection of fan of $\overline{LM}_{0,10}$

A good polygon will correspond to an elliptic pair $(C, Bl_e \mathbb{P}_{\Delta})$.

A good polygon will correspond to an elliptic pair $(C, Bl_e \mathbb{P}_{\Delta})$.

DEFINITION

An elliptic pair (C, X) consists of

- a projective rational surface X with log terminal singularities,
- an arithmetic genus 1 curve $C \subseteq X$ such that $C^2 = 0$,

• C disjoint from singularities of X.

A good polygon will correspond to an elliptic pair $(C, Bl_e \mathbb{P}_{\Delta})$.

DEFINITION

An elliptic pair (C, X) consists of

- a projective rational surface X with log terminal singularities,
- an arithmetic genus 1 curve $C \subseteq X$ such that $C^2 = 0$,
- C disjoint from singularities of X.

By adjunction, $(K + C)_{|C} = O_C$. In particular, $K \cdot C = C^2 = 0$

A good polygon will correspond to an elliptic pair $(C, Bl_e \mathbb{P}_{\Delta})$.

DEFINITION

An elliptic pair (C, X) consists of

- a projective rational surface X with log terminal singularities,
- an arithmetic genus 1 curve $C \subseteq X$ such that $C^2 = 0$,
- C disjoint from singularities of X.

By adjunction, $(K + C)_{|C} = O_C$. In particular, $K \cdot C = C^2 = 0$

 $C^{\perp} \subseteq \mathsf{Cl}(X)$ orthogonal complement of C ; C^{\perp} contains C

Restriction map

$$\operatorname{res}: \ C^{\perp} \to \operatorname{Pic}^{0}(C), \quad D \mapsto \mathcal{O}(D)|_{C}$$

Restriction map

$$\operatorname{res}: \ C^{\perp} \to \operatorname{Pic}^{0}(C), \quad D \mapsto \mathcal{O}(D)|_{C}$$

DEFINITION

The order e(C, X) of the pair (C, X) is the order of res(C) in $Pic^{0}(C)$.

Restriction map

res :
$$C^{\perp} \to \operatorname{Pic}^{0}(C), \quad D \mapsto \mathcal{O}(D)|_{C}$$

DEFINITION

The order e(C, X) of the pair (C, X) is the order of res(C) in $Pic^{0}(C)$.

The order e(C, X) is the smallest integer e > 0 such $h^0(eC) > 1$.

Restriction map

res :
$$C^{\perp} \to \operatorname{Pic}^{0}(C), \quad D \mapsto \mathcal{O}(D)|_{C}$$

DEFINITION

The order e(C, X) of the pair (C, X) is the order of res(C) in $Pic^{0}(C)$.

The order e(C, X) is the smallest integer e > 0 such $h^0(eC) > 1$.

If $e := e(C, X) < \infty$, then $h^0(eC) = 2$.

Restriction map

res :
$$C^{\perp} \to \operatorname{Pic}^{0}(C), \quad D \mapsto \mathcal{O}(D)|_{C}$$

DEFINITION

The order e(C, X) of the pair (C, X) is the order of res(C) in $Pic^{0}(C)$.

The order e(C, X) is the smallest integer e > 0 such $h^0(eC) > 1$.

If $e := e(C, X) < \infty$, then $h^0(eC) = 2$.

If X, C are defined over a finite field, then $e(C, X) < \infty$.

NON-POLYHEDRALITY CRITERION

LEMMA

- If $e = e(C, X) < \infty$, then $h^0(eC) = 2$ and $|eC| : X \to \mathbb{P}^1$ is an elliptic fibration with C a multiple fiber.
- If $e(C, X) = \infty$, then C is rigid :

$$h^0(nC) = 1$$
 for all $n \ge 1$.

In this case, $\overline{Eff}(X)$ is not polyhedral if $\rho(X) \ge 3$.

NON-POLYHEDRALITY CRITERION

LEMMA

• If $e = e(C, X) < \infty$, then $h^0(eC) = 2$ and $|eC| : X \to \mathbb{P}^1$ is an elliptic fibration with C a multiple fiber.

• If $e(C, X) = \infty$, then C is rigid :

$$h^0(nC) = 1$$
 for all $n \ge 1$.

In this case, $\overline{Eff}(X)$ is not polyhedral if $\rho(X) \ge 3$.

Nikulin: $\rho(X) \ge 3$, $\overline{\text{Eff}}(X)$ is polyhedral \Rightarrow every irreducible curve *C* with $C^2 = 0$ is contained in the interior of a facet; in particular, a multiple moves.

Lattice polygon $\Delta \subseteq \mathbb{R}^2 \Longrightarrow (\mathbb{P}_\Delta, \mathcal{L}_\Delta)$ associated polarized toric surface

Lattice polygon $\Delta \subseteq \mathbb{R}^2 \implies (\mathbb{P}_{\Delta}, \mathcal{L}_{\Delta})$ associated polarized toric surface Set $X = Bl_e \mathbb{P}_{\Delta}$ and let m > 0 integer. Then X is defined over \mathbb{Z} .

Lattice polygon $\Delta \subseteq \mathbb{R}^2 \implies (\mathbb{P}_{\Delta}, \mathcal{L}_{\Delta})$ associated polarized toric surface Set $X = Bl_e \mathbb{P}_{\Delta}$ and let m > 0 integer. Then X is defined over \mathbb{Z} . DEFINITION

A lattice polygon Δ with at least 4 vertices is good if there exists

 $C \in |\mathcal{L}_{\Delta} - mE|$

irreducible such that (C, X) is an elliptic pair with $e(C, X) = \infty$:

Lattice polygon $\Delta \subseteq \mathbb{R}^2 \implies (\mathbb{P}_{\Delta}, \mathcal{L}_{\Delta})$ associated polarized toric surface Set $X = Bl_e \mathbb{P}_{\Delta}$ and let m > 0 integer. Then X is defined over \mathbb{Z} . DEFINITION

A lattice polygon Δ with at least 4 vertices is good if there exists

$$C \in |\mathcal{L}_{\Delta} - mE|$$

irreducible such that (C, X) is an elliptic pair with $e(C, X) = \infty$:

(I) The Newton polygon of C coincides with $\Delta \iff C \subseteq X^{smooth}$), (II) $Vol(\Delta) = m^2$ and $|\partial \Delta \cap \mathbb{Z}^2| = m \iff C^2 = 0$, $p_a(C) = 1$), (III) The restriction res $(C) = \mathcal{O}_X(C)|_C$ is not torsion in $\operatorname{Pic}^0(C)$ over \mathbb{Q} .

EXAMPLE

$$\operatorname{Vol}(\Delta) = 36, \quad |\partial \Delta \cap \mathbb{Z}^2| = 6$$

The linear system $|\mathcal{L}_{\Delta} - 6E|$ contains a unique curve C with equation

$$\begin{aligned} x^{4}y^{6} + 6x^{5}y^{4} - 2x^{4}y^{5} - 14x^{5}y^{3} - 17x^{4}y^{4} - 4x^{3}y^{5} + \\ +x^{6}y + 11x^{5}y^{2} + 38x^{4}y^{3} + 26x^{3}y^{4} - 9x^{5}y - 27x^{4}y^{2} - \\ -34x^{3}y^{3} + 22x^{4}y + 16x^{3}y^{2} - 10x^{2}y^{3} - 24x^{3}y + \\ +10x^{2}y^{2} + 15x^{2}y + 5xy^{2} - 11xy + 1 = 0. \end{aligned}$$

EXAMPLE

The curve C is a smooth elliptic curve labelled 997.a1 in the LMFDB database. It has the minimal equation

$$y^2 + y = x^3 - x^2 - 24x + 54$$

The Mordell-Weil group $C(\mathbb{Q})$ is $\mathbb{Z} \times \mathbb{Z}$, with generators

$$Q = (1,5), P = (6,-10)$$

EXAMPLE

The curve C is a smooth elliptic curve labelled 997.a1 in the LMFDB database. It has the minimal equation

$$y^2 + y = x^3 - x^2 - 24x + 54$$

The Mordell-Weil group $C(\mathbb{Q})$ is $\mathbb{Z} \times \mathbb{Z}$, with generators

$$Q = (1,5), \quad P = (6,-10)$$

Computation : res(C) = -Q (not torsion, so Δ is good)

Polyhedrality when $e(C, X) < \infty$? In general, for any e(C, X):

Polyhedrality when $e(C, X) < \infty$? In general, for any e(C, X):

DEFINITION

An elliptic pair (C, X) is called minimal if there are no smooth rational curves $E \subseteq X$ such that $K \cdot E < 0$ and $C \cdot E = 0$.

Polyhedrality when $e(C, X) < \infty$? In general, for any e(C, X):

DEFINITION

An elliptic pair (C, X) is called minimal if there are no smooth rational curves $E \subseteq X$ such that $K \cdot E < 0$ and $C \cdot E = 0$.

Equivalently: $\nexists E \subseteq X$ such that $(K + C) \cdot E < 0$

Polyhedrality when $e(C, X) < \infty$? In general, for any e(C, X):

DEFINITION

An elliptic pair (C, X) is called minimal if there are no smooth rational curves $E \subseteq X$ such that $K \cdot E < 0$ and $C \cdot E = 0$.

Equivalently: $\nexists E \subseteq X$ such that $(K + C) \cdot E < 0$ K + C is effective (in fact, $h^0(K + C) = 1$): $0 \rightarrow \mathcal{O}_X(K) \rightarrow \mathcal{O}_X(K + C) \rightarrow \mathcal{O}_C \rightarrow 0$ $h^0(\mathcal{O}_X(K)) = h^2(\mathcal{O}_X) = 0, \quad h^1(\mathcal{O}_X(K)) = h^1(\mathcal{O}_X) = 0$

Polyhedrality when $e(C, X) < \infty$? In general, for any e(C, X):

DEFINITION

An elliptic pair (C, X) is called minimal if there are no smooth rational curves $E \subseteq X$ such that $K \cdot E < 0$ and $C \cdot E = 0$.

Equivalently: $\nexists E \subseteq X$ such that $(K + C) \cdot E < 0$ K + C is effective (in fact, $h^0(K + C) = 1$): $0 \rightarrow \mathcal{O}_X(K) \rightarrow \mathcal{O}_X(K + C) \rightarrow \mathcal{O}_C \rightarrow 0$ $h^0(\mathcal{O}_X(K)) = h^2(\mathcal{O}_X) = 0, \quad h^1(\mathcal{O}_X(K)) = h^1(\mathcal{O}_X) = 0$ $(K + C) \cdot C = 0, C$ is nef \implies If $(K + C) \cdot E < 0$ then E is a component of K + C and $C \cdot E = 0, K \cdot E < 0$.

(C, X) is minimal $\Leftrightarrow K + C$ is nef $\Leftrightarrow K \equiv \alpha C \ (\alpha \in \mathbb{Q}) \Leftrightarrow K^2 = 0$

(C,X) is minimal $\Leftrightarrow K + C$ is nef $\Leftrightarrow K \equiv \alpha C \ (\alpha \in \mathbb{Q}) \Leftrightarrow K^2 = 0$

THEOREM

For an elliptic pair (C, X), there exists a minimal elliptic pair (C, Y) and a morphism $\pi : X \to Y$, which is an isomorphism in a neighborhood of C. In particular, e(C, X) = e(C, Y).

(C,X) is minimal $\Leftrightarrow K + C$ is nef $\Leftrightarrow K \equiv \alpha C \ (\alpha \in \mathbb{Q}) \Leftrightarrow K^2 = 0$

THEOREM

For an elliptic pair (C, X), there exists a minimal elliptic pair (C, Y) and a morphism $\pi : X \to Y$, which is an isomorphism in a neighborhood of C. In particular, e(C, X) = e(C, Y).

Proof.

Run (K + C)-MMP (Tanaka 2014, Fujino 2020).

(C,X) is minimal $\Leftrightarrow K + C$ is nef $\Leftrightarrow K \equiv \alpha C \ (\alpha \in \mathbb{Q}) \Leftrightarrow K^2 = 0$

THEOREM

For an elliptic pair (C, X), there exists a minimal elliptic pair (C, Y) and a morphism $\pi : X \to Y$, which is an isomorphism in a neighborhood of C. In particular, e(C, X) = e(C, Y).

Proof.

Run (K + C)-MMP (Tanaka 2014, Fujino 2020).

Remark: (C, X) is minimal, $\mathcal{O}(C)_{|C}$ not torsion, $\mathcal{O}(K + C)_{|C} = \mathcal{O}_{|C} \Rightarrow$

$$K + C \sim 0$$

In particular, K is a Cartier divisor and X has Du Val singularities.

MINIMAL + DU VAL SINGULARITIES

DEFINITION

Since $K \cdot C = 0$, define on $Cl_0(X) = C^{\perp}/\langle K \rangle$ the reduced restriction map

 $\overline{\mathrm{res}}: \operatorname{Cl}_0(X) \to \operatorname{Pic}^0(C)/\langle \operatorname{res}(K) \rangle$

MINIMAL + DU VAL SINGULARITIES

DEFINITION

Since $K \cdot C = 0$, define on $Cl_0(X) = C^{\perp}/\langle K \rangle$ the reduced restriction map

$$\overline{\mathrm{res}}: \operatorname{Cl}_0(X) \to \operatorname{Pic}^0(C)/\langle \operatorname{res}(K) \rangle$$

THEOREM

Let (C, Y) be an elliptic pair such that Y has Du Val singularities. Let Z be the minimal resolution of Y. Then

(C, Y) minimal \Leftrightarrow (C, Z) minimal \Leftrightarrow $\rho(Z) = 10.$ In this case $Cl_0(Z) \simeq \mathbb{E}_8$.

MINIMAL + DU VAL SINGULARITIES

DEFINITION

Since $K \cdot C = 0$, define on $Cl_0(X) = C^{\perp}/\langle K \rangle$ the reduced restriction map

$$\overline{\mathrm{res}}: \operatorname{Cl}_0(X) \to \operatorname{Pic}^0(C)/\langle \operatorname{res}(K) \rangle$$

THEOREM

Let (C, Y) be an elliptic pair such that Y has Du Val singularities. Let Z be the minimal resolution of Y. Then

(C, Y) minimal \Leftrightarrow (C, Z) minimal \Leftrightarrow $\rho(Z) = 10.$ In this case $Cl_0(Z) \simeq \mathbb{E}_8.$

Assume (C, Y) minimal elliptic pair with $e(C, Y) < \infty$. Then

 $\overline{Eff}(Y) \quad polyhedral \quad \Leftrightarrow \quad \overline{Eff}(Z) \quad polyhedral \quad \Leftrightarrow \\ \operatorname{Ker}(\overline{\operatorname{res}}) \quad contains \ 8 \ linearly \ independent \ roots \ of \ \mathbb{E}_8.$

Upshot

(C, Y) = minimal model of elliptic pair <math>(C, X)

• $e(C,X) = \infty \Rightarrow \overline{\text{Eff}}(X)$, $\overline{\text{Eff}}(Y)$ not polyhedral (if $\rho \geq 3$)

In this case, Y is Du Val.

• $e(C,X) < \infty$ and Y is Du Val \Rightarrow polyhedrality criterion for $\overline{\text{Eff}}(Y)$

Upshot

(C, Y) =minimal model of elliptic pair (C, X)

• $e(C,X) = \infty \Rightarrow \overline{\text{Eff}}(X)$, $\overline{\text{Eff}}(Y)$ not polyhedral (if $\rho \geq 3$)

In this case, Y is Du Val.

• $e(C,X) < \infty$ and Y is Du Val \Rightarrow polyhedrality criterion for $\overline{\text{Eff}}(Y)$

PROBLEM

- Suppose C, X are defined over \mathbb{Z} , $e(C, X) = \infty$
- X → Y extends to the morphism of integral models X → Y over Spec Z (outside of finitely many primes of bad reduction)
- (C_p, Y_p) is still the minimal elliptic pair associated to (C_p, X_p)
- $e(C_p, X_p) < \infty$. Study distribution of "polyhedral" primes

EXAMPLE - MINIMAL ELLIPTIC PAIR

(C,X) elliptic pair, $X = \mathsf{Bl}_e \mathbb{P}_\Delta$

Zariski decomposition $K_X + C = N + P$, $N = 3C_1 + 2C_2$, P = 0

To get minimal elliptic pair (C, Y), contract C_1, C_2 .

 $Z \rightarrow Y$ minimal resolution, ho(X) = 5, ho(Y) = 3, ho(Z) = 10

 $\tilde{\mathbb{P}}_\Delta$ is the minimal resolution of \mathbb{P}_Δ

EXAMPLE - MINIMAL RESOLUTION

Fan of the minimal resolution $\tilde{\mathbb{P}}_{\Delta}$ of \mathbb{P}_{Δ} :

 $C_1, C_2 =$ proper transforms of 1-parameter subgroups $\{v = 1\}, \{u = 1\}$

EXAMPLE - MINIMAL RESOLUTION

 $Z \rightarrow Y$ minimal resolution of Y, $Cl(Z) = Cl(Y) \oplus T$

T = sublattice spanned by classes of (-2) curves above singularities of Y

T is contained in the kernel of the reduced restriction map

$$\overline{\mathrm{res}}:\mathbb{E}_8=\mathrm{Cl}_0(Z)\to\mathrm{Pic}^0(C)/\langle Q\rangle,\quad Q=(1,5)$$

Computations:

• $T = \mathbb{A}_7$

Images of roots of E₈ in E₈/A₇ = Z{α} are ±kα, for 0 ≤ k ≤ 3
res(α) = P − Q where P = (6, −10)

 $\overline{\text{Eff}}(Y)$ not polyhedral in characteristic $p \Leftrightarrow k\overline{P} \notin \langle \overline{Q} \rangle$ for k = 1, 2, 3

Example - Non-polyhedral primes

Prove that the set of primes p such that

$$\overline{P}, 2\overline{P}, 3\overline{P} \notin \langle \overline{Q} \rangle \subseteq C(\mathbb{F}_p)$$

has positive density.

Fix q prime. It suffices to prove that the set of primes p such that

- q divides the index of $\langle \overline{Q} \rangle \subseteq C(\mathbb{F}_p)$
- q does not divide the index of $\langle 6\overline{P} \rangle \subseteq C(\mathbb{F}_p)$

has positive density.

Apply Chebotarev's Density theorem + a theorem of Lang-Trotter

Non-polyhedral primes

The set of non-polyhedral primes p < 2000 for the previous example of a good polygon:

7, 11, 41, 67, 173, 307, 317, 347, 467, 503, 523, 571, 593, 631, 677, 733, 797, 809, 811, 827, 907, 937, 1019, 1021, 1087, 1097, 1109, 1213, 1231, 1237, 1259, 1409, 1433, 1439, 1471, 1483, 1493, 1567, 1601, 1619, 1669, 1709, 1801, 1811, 1823, 1867, 1877, 1933, 1951, 1993

This gives 18% of the primes under 2000.

Thank you!