Volumes and Intersection Theory on Moduli Spaces of Differentials

Dawei Chen

Boston College

Dawei Chen

Volumes and Intersection Theory on Moduli Spaces of Differentials

Boston College

Image: A math black

Dawei Chen

- Let ω be a holomorphic differential on a Riemann surface X.
- Away from the zeros, $\omega = dz = dx + idy \implies \omega$ induces a flat metric on $X \setminus (\omega)_0$.
- At a zero of order m, $\omega = d(w^{m+1}) \implies$ it corresponds to a saddle point of angle $2\pi(m+1)$.

Image: A math a math

Example (A differential with a double zero on a genus two surface)

• All vertices are identified as the saddle point of angle 6π .

Dawei Chen

Moduli spaces of holomorphic differentials

Let
$$\mu = (m_1, ..., m_n)$$
 be a partition of $2g - 2$. Define the moduli space of holomorphic differentials of type μ by

$$\mathcal{H}(\mu) = \Big\{ (X, \omega) \mid X ext{ is a Riemann surface of genus } g,$$

 ω is a holomorphic differential with $(\omega)_0 = m_1 z_1 + \cdots + m_n z_n$.

< ≥ > <

Period coordinates of $\mathcal{H}(\mu)$

Let γ₁,..., γ_{2g}; γ_{2g+1},..., γ_{2g+n-1} be a basis of the relative homology group H₁(X, z₁,..., z_n; ℤ).

$$\left(\int_{\gamma_1}\omega,\ldots,\int_{\gamma_{2g+n-1}}\omega\right)$$

provides a local coordinate system of $\mathcal{H}(m_1, \ldots, m_n)$ at (X, ω) , called *period coordinates*.

- Period coordinates correspond to the "edges" of the polygon representation of (X, ω) .
- $\mathcal{H}(m_1, \ldots, m_n)$ is a complex orbifold of dimension 2g + n 1.

イロト イヨト イヨト イヨト

Masur-Veech volumes

- Let $\mathcal{H}_1(\mu) \subset \mathcal{H}(\mu)$ be the hypersurface parameterizing (X, ω) of area one.
- Period coordinates of H(μ) induces a natural Lebesgue measure on H₁(μ).
- [Masur; Veech, 1982] showed that the corresponding volume of $\mathcal{H}_1(\mu)$ for any μ is finite, called the *Masur-Veech volume*.

- Recall that \u03c6_i is the cotangent line bundle class associated with the *i*-th marked point.
- Let η be the tautological line bundle class $\mathcal{O}(-1)$ of $\mathbb{P}\overline{\mathcal{H}}$, where $\mathcal{O}(-1)|_{(X,\omega)} = \mathbb{C} \cdot \omega$.
- Theorem (C.-Möller-Sauvaget-Zagier, 2019)

For all partitions $\mu = (m_1, ..., m_n)$ of 2g - 2, the Masur-Veech volume of $\mathcal{H}(\mu)$ equals the intersection number

$$\mathsf{Vol}(\mathcal{H}(\mu)) = \frac{-2(2\pi i)^{2g}}{(2g-3+n)!} \cdot \frac{1}{m_1+1} \int_{\mathbb{P}\overline{\mathcal{H}}_{g,n}(\mu)} \eta^{2g-1} \psi_2 \cdots \psi_n.$$

< ロ > < 同 > < 回 > < 回 > < 回

Dawei Chen

A heuristic viewpoint via hermitian metrics

The Masur-Veech volume form on $\mathbb{P}\mathcal{H}(m_1, \ldots, m_n)$ is of type "Abs \land Rel":

$$\Big(\prod_{i=2}^{2g}(da_i\wedge d\bar{a}_i)\Big)\wedge\prod_{i=2}^n(dr_i\wedge d\bar{r}_i),$$

where the a_i and r_i correspond to the absolute and relative period coordinates respectively.

■ The line bundle O_{PH}(-1) carries a hermitian metric induced by the area form:

$$h(X,\omega) = \operatorname{Area}(X,\omega) = \frac{i}{2} \sum_{i=1}^{g} (a_i \bar{a}_{g+i} - a_{g+i} \bar{a}_i).$$

• η^{2g-1} corresponds to the Abs part $\bigwedge^{2g-1} (\partial \bar{\partial} \log h)$.

Dawei Chen

- One expects to find hermitian metrics on the ψ -bundles such that $\psi_2 \cdots \psi_n$ corresponds to the Rel part.
- It remains to justify the singular loci and extensions to the boundary of PH_{g,n}(µ) for these hermitian metrics.

< □ > < A > >

→

Boston College

An actual proof via recursions

- The intersection numbers satisfy a recursion by merging zeros.
- The volumes satisfy a recursion by counting torus covers.
- The two recursions are equivalent and agree on the minimal space H(2g 2).

Image: A match a ma

It implies that they are equal for all $\mathcal{H}(\mu)$.

Volume asymptotics

- Eskin-Zorich conjectured that $(m_1 + 1) \cdots (m_n + 1) \operatorname{Vol}(\mathcal{H}(\mu)) \to 4 \text{ as } g \to \infty.$
- [Aggarwal, 2018] proved it by a combinatorial argument.

Theorem (CMSZ)

The volume-intersection formula can determine the volume asymptotic:

$$(m_1+1)\cdots(m_n+1)\operatorname{Vol}(\mathcal{H}(\mu))\sim 4-rac{2\pi^2}{3(2g-2+n)}+O(rac{1}{g^2}).$$

< ロ > < 同 > < 回 > < 回 > < 回

Dawei Chen