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Let ω be a holomorphic differential on a Riemann surface X .

Away from the zeros, ω = dz = dx + idy =⇒ ω induces a
flat metric on X \ (ω)0.

At a zero of order m, ω = d(wm+1) =⇒ it corresponds to a
saddle point of angle 2π(m + 1).
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Example (A differential with a double zero on a genus two surface)
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All vertices are identified as the saddle point of angle 6π.
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Moduli spaces of holomorphic differentials

Let µ = (m1, . . . ,mn) be a partition of 2g − 2. Define the
moduli space of holomorphic differentials of type µ by

H(µ) =
{

(X , ω) | X is a Riemann surface of genus g ,

ω is a holomorphic differential with (ω)0 = m1z1+· · ·+mnzn

}

.
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Period coordinates of H(µ)

Let γ1, . . . , γ2g ; γ2g+1, . . . , γ2g+n−1 be a basis of the relative
homology group H1(X , z1, . . . , zn;Z).

(

∫

γ1

ω, . . . ,

∫

γ2g+n−1

ω

)

provides a local coordinate system of H(m1, . . . ,mn) at
(X , ω), called period coordinates.

Period coordinates correspond to the “edges” of the polygon
representation of (X , ω).

H(m1, . . . ,mn) is a complex orbifold of dimension 2g + n − 1.
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Masur-Veech volumes

Let H1(µ) ⊂ H(µ) be the hypersurface parameterizing (X , ω)
of area one.

Period coordinates of H(µ) induces a natural Lebesgue
measure on H1(µ).

[Masur; Veech, 1982] showed that the corresponding volume
of H1(µ) for any µ is finite, called the Masur-Veech volume.
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Recall that ψi is the cotangent line bundle class associated
with the i -th marked point.

Let η be the tautological line bundle class O(−1) of PH,
where O(−1)|(X ,ω) = C · ω.

Theorem (C.-Möller-Sauvaget-Zagier, 2019)

For all partitions µ = (m1, . . . ,mn) of 2g − 2, the Masur-Veech

volume of H(µ) equals the intersection number

Vol(H(µ)) =
−2(2πi)2g

(2g − 3 + n)!
·

1

m1 + 1

∫

PHg,n(µ)
η2g−1ψ2 · · ·ψn.
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A heuristic viewpoint via hermitian metrics

The Masur-Veech volume form on PH(m1, . . . ,mn) is of type
“Abs∧Rel”:

(

2g
∏

i=2

(dai ∧ dāi)
)

∧

n
∏

i=2

(dri ∧ dr̄i),

where the ai and ri correspond to the absolute and relative
period coordinates respectively.

The line bundle OPH(−1) carries a hermitian metric induced
by the area form:

h(X , ω) = Area(X , ω) =
i

2

g
∑

i=1

(ai āg+i − ag+i āi ).

η2g−1 corresponds to the Abs part
∧2g−1(∂∂̄ log h).
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One expects to find hermitian metrics on the ψ-bundles such
that ψ2 · · ·ψn corresponds to the Rel part.

It remains to justify the singular loci and extensions to the
boundary of PHg ,n(µ) for these hermitian metrics.
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An actual proof via recursions

The intersection numbers satisfy a recursion by merging zeros.

The volumes satisfy a recursion by counting torus covers.

The two recursions are equivalent and agree on the minimal
space H(2g − 2).

It implies that they are equal for all H(µ).
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Volume asymptotics

Eskin-Zorich conjectured that
(m1 + 1) · · · (mn + 1)Vol(H(µ)) → 4 as g → ∞.

[Aggarwal, 2018] proved it by a combinatorial argument.

Theorem (CMSZ)

The volume-intersection formula can determine the volume

asymptotic:

(m1 + 1) · · · (mn + 1)Vol(H(µ)) ∼ 4−
2π2

3(2g − 2 + n)
+ O( 1

g2 ).

Dawei Chen Boston College

Volumes and Intersection Theory on Moduli Spaces of Differentials


	Holomorphic differentials
	Volumes of moduli spaces
	Applications

