The Kodaira dimension of $\overline{\mathcal{M}}_g$: latest progress on a century-old problem

Gavril Farkas Humboldt-Universität zu Berlin

A classical problem

Theorem

(Severi 1915) The moduli space \mathcal{M}_q of curves of genus g is unirational for $q < 10$.

• Severi used in his proof plane curves of minimal degree whose nodes are in general position. The result implies that one can write down explicitly the general curve of genus q in a family depending on free parameters.

- Severi's unirationality result predates the proof of the existence of $\mathcal{M}_q!$
- Sernesi, Chang-Ran (1980s), Verra (2005): M_a is unirational for $g = 11, 12, 13, 14$. For all $g \le 14$ Schreyer has produced efficient programs writing down the random curve C/\mathbb{F}_q of genus q.
- Chang-Ran (1987), Bruno-Verra (2005), Schreyer (2016): \overline{M}_{15} is rationally connected.
- Interesting news on M_{16} . Discussing it would take us too far afield.

Theorem

(Harris, Mumford, Eisenbud 1982-87) $\overline{\mathcal{M}}_q$ is of general type for $q \ge 24$.

The Harris-Mumford approach

• Indirectly inspired by the work of Freitag and Tai on A_a .

$$
\overline{\mathcal{M}}_g \setminus \mathcal{M}_g = \Delta_0 \cup \Delta_1 \cup \ldots \cup \Delta_{\lfloor \frac{g}{2} \rfloor},
$$

where Δ_i are the irreducible boundary divisors in $\overline{\mathcal{M}}_q$. Precisely, $\Delta_0 := \left\{ [C/p \sim q] : C \text{ of genus } g-1 \text{ and } p, q \in C \right\}^-$ and for $i \geq 1$ $\Delta_i := \{ [C_1 \cup C_2] : C_1 \text{ of genus } i, C_2 \text{ of genus } g-i \}^-$

• The Hodge class: $\lambda := [\mathbb{E}] \in \text{Pic}(\overline{\mathcal{M}}_q)$, where $\mathbb{E} \to \overline{\mathcal{M}}_q$ is the Hodge bundle with fibres $\mathbb{E}[C]=\bigwedge^gH^0(C,\omega_C)$, for any stable curve $C.$

Theorem

(Harer, Arbarello-Cornalba) For $g\geq 3$, the group $CH^1(\overline{\mathcal M}_g)$ is freely generated by the classes $\lambda, \delta_0, \ldots, \delta_{\lfloor g/2 \rfloor}.$

• Via a Riemann-Roch calculation on the universal curve, Harris and Mumford computed the canonical class of the moduli space:

$$
K_{\overline{\mathcal{M}}_g} = 13\lambda - 2\delta_0 - 3\delta_1 - 2\delta_2 - \cdots - 2\delta_{\lfloor \frac{g}{2} \rfloor}.
$$

Since the singularities of $\overline{\mathcal{M}}_q$ do not impose adjunction conditions (Harris-Mumford), \mathcal{M}_g is of general type if and only if $K_{\overline{\mathcal{M}}_g}$ is big.

Strategy: Find an effective divisor $D \subseteq \overline{\mathcal{M}}_q$ such that $[D] = a\lambda - \sum_{i=0}^{\lfloor g/2 \rfloor} b_i \delta_i$, with $a,b_i \geq 0$ and its slope

$$
s(D) := \frac{a}{\min_{i \ge 0} b_i} < s(K_{\overline{\mathcal{M}}_g}) = \frac{13}{2}.
$$

Then for $\alpha, \beta > 0$ we can write that

$$
K_{\overline{\mathcal{M}}_g} = \alpha \cdot \lambda + \beta \cdot D + \{\text{non-negative combination of }\delta_i\}.
$$

Since λ is big (its sections correspond to Siegel modular forms), it follows that $K_{\overline{\mathcal M}_g}$ is big, that is, $\mathcal M_g$ is of general type.

Summary: $\overline{\mathcal{M}}_q$ of general type \Leftrightarrow there exists an effective divisor $D \subseteq \overline{\mathcal{M}}_g$ with $s(D) < \frac{13}{2}$ $\frac{13}{2}$.

• D can be chosen to be a geometric divisor, i.e. points of D can be characterized by a geometric property (existence of a linear system, a special syzygy, a Hurwitz condition ...)

• Brill-Noether Theorem: If C is a general curve of genus q, the variety

$$
W_d^r(C):=\left\{L\in \operatorname{Pic}^d(C): h^0(C,L)\geq r+1\right\}
$$

has dimension $\rho(g, r, d) = g - (r + 1)(g - d + r)$.

Theorem

(Eisenbud-Harris 1987) If
$$
\rho(g, r, d) = -1
$$
, the locus
\n $\mathcal{M}_{g,d}^r := \{ [C] \in \mathcal{M}_g : W_d^r(C) \neq \emptyset \}$ is a divisor in \mathcal{M}_g . The class of its closure in $\overline{\mathcal{M}}_g$ is $[\overline{\mathcal{M}}_{g,d}^r] = c((g+3)\lambda - \frac{g+1}{6}\delta_0 - \sum_{i=1}^{\lfloor g/2 \rfloor} i(g-i)\delta_i).$

Thus $s(\overline{\mathcal{M}}_{g,d}^r) = 6 + \frac{12}{g+1} < \frac{13}{2}$ $\frac{13}{2}$ for $g \ge 24$. This proves the Harris-Mumford-Eisenbud theorem (at least when $q + 1$ is composite).

 \bullet Can one construct divisors of slope $< 6 + \frac{12}{g+1}$ (Slope Conjecture)?

Theorem

(Farkas-Popa 2003) If $D \subseteq \overline{\mathcal{M}}_q$ is an effective divisor with $s(D) < 6 + \frac{12}{g+1}$, then

 $D \supseteq \mathcal{K}_g := \big\{ [C] \in \mathcal{M}_g : C \textit{ lies on a } K3 \textit{ surface} \big\}.$

The Strong Maximal Rank Conjecture Fix g, r and d with $\rho(g, r, d) \geq 0$. Set $\sigma \colon \mathcal{G}^r_d \twoheadrightarrow \mathcal{M}_g$, with

$$
\mathcal{G}^r_d := \big\{ [C, L] : [C] \in \mathcal{M}_g \text{ and } L \in W^r_d(C) \big\}.
$$

Maximal Rank Conjecture: For a general $[C,L] \in \mathcal{G}_{d}^{r},$ the maps

$$
\phi^k_L\colon \mathrm{Sym}^k H^0(C,L)\to H^0(C,L^k)
$$

given by multiplication of sections are of maximal rank for every $k \geq 2$. This is now a theorem of Eric Larson (2018), after a lot of previous work (Hirschowitz, Ballico-Ellia, Voisin, Jensen-Payne, Osserman ...)

• In the statement of MRC both C and L are general.

Strong Maximal Rank Conjecture (Aprodu-Farkas 2008) For a general curve C of genus q , the locus

$$
\Sigma_d^r(C):=\left\{L\in W^r_d(C):\text{Sym}^2H^0(L)\xrightarrow{\phi_L}H^0(L^2)\text{ not of maximal rank}\right\}
$$

has the expected dimension, that is, $\rho(g,r,d)-(2d+1-g)+\frac{r(r+3)}{2}$.

• If $\rho(g, r, d) - (2d + 1 - g) + \frac{r(r+3)}{2} < 0$, we expect $\phi_L \colon \mathsf{Sym}^2 H^0(C, L) \to H^0(C, L^2)$ to be injective for all $L \in W^r_d(C).$ Note: $h^0(C, L^2) = 2d + 1 - g$, because $h^1(C, L^2) = 0$.

• For $\rho(q, r, d) = 0$, the MRC and the Strong MRC are equivalent (monodromy!) For $\rho(q, r, d) > 0$ the Strong MRC is incomparably more difficult. One cannot use projective degenerations! Powerful tropical methods have led to a breakthrough on the Strong MRC, with direct applications to the Kodaira dimension of \mathcal{M}_a .

Theorem

(Farkas-Jensen-Payne 2020) Both moduli spaces \overline{M}_{22} and \overline{M}_{23} are of general type.

$$
\begin{aligned}\n\text{Divisors on } \overline{\mathcal{M}}_{22} \text{ and } \overline{\mathcal{M}}_{23} \text{ via Strong MRC} \\
\text{Fix } r = 6 \text{ and } d = g + 3. \quad \begin{cases}\ng = 22, d = 25 : C \xrightarrow{|L|} \mathbb{P}^6, \ \rho = 1 \\
g = 23, d = 26 : C \xrightarrow{|L|} \mathbb{P}^6, \ \rho = 2\n\end{cases}\n\end{aligned}
$$

The degeneracy locus of those $[C,L] \in \mathcal{G}^6_{g+3}$ for which the map

$$
\phi_L \colon \mathrm{Sym}^2 H^0(C, L) \to H^0(C, L^2)
$$

is not injective has expected codimension $g - 20$, that is, 2 if $g = 22$ respectively 3 if $q = 23$. Consequently

$$
\mathcal{D}_g:=\big\{[C]\in \mathcal{M}_g: \exists L\in W_{g+3}^6(C) \textrm{ with } \phi_L \textrm{ not injective} \big\}
$$

is a virtual divisor on \mathcal{M}_q . Since $\mathcal{K}_q \subseteq \mathcal{D}_q$ (sections of $K3$ surfaces fail Strong MRC!), \mathcal{D}_q is a prime candidates to show that $\overline{\mathcal{M}}_q$ is of general type.

• Issues: (i) Transversality and (ii) compactifying \mathcal{D}_q .

Virtual classes of MRC divisors

• We choose a partial compactification \mathcal{M}_q of \mathcal{M}_q differing from $\mathcal{M}_q \cup \Delta_0 \cup \Delta_1$ only in codimension 2 and a proper extension

$$
\sigma\colon \widetilde{\mathcal{G}}_{g+3}^6\rightarrow \widetilde{\mathcal{M}}_g,
$$

from the stack of limit linear series of type $\mathfrak{g}^6_{g+3}.$

• We construct locally free sheaves $\mathcal E$ and $\mathcal F$ over $\mathcal G_{g+3}^6$ with $\mathsf{rk}(\mathcal E)=7$ and $rk(\mathcal{F}) = q + 7(= 2d + 1 - q)$, together with a morphism $\phi\colon \mathsf{Sym}^2\mathcal{E}\to\mathcal{F},$

s.t. for $[C,L]\in\mathcal{G}^6_{g+3},$ we have $\mathcal{E}(C,L)=H^0(L)$, $\mathcal{F}(L)=H^0(L^2)$ and $\phi_{[C,L]}\colon \mathsf{Sym}^2 H^0(C,L) \to H^0(C,L^2)$

is the usual multiplication of sections.

Definition

Define the virtual class $[\widetilde{D}_g]^\text{vir} := \sigma_*\left(c_{g-20}(\mathcal{F} - \mathsf{Sym}^2 \mathcal{E})\right) \in CH^1(\widetilde{\mathcal{M}}_g)$.

 \bullet If the degeneracy locus $\mathcal U$ of $\phi\colon \mathsf{Sym}^2\mathcal E\to \mathcal F$ has the expected codimension 2 for $g = 22$, respectively 3 for $g = 23$, then $[\mathcal{D}_g]^\text{vir} = [\mathcal{D}_g]$.

Theorem

(FJP) The virtual classes of the MRC divisors have the following slopes:

$$
s([\widetilde{\mathcal{D}}_{22}]^{vir}) = \frac{17121}{2636} = 6.495... \text{ and } s([\widetilde{\mathcal{D}}_{23}]^{vir}) = \frac{470749}{72725} = 6.473...
$$

Conclusion: Both virtual slopes are $\frac{13}{2}$ $\frac{13}{2}$! Transversality issues:

Theorem

(FJP) The Strong Maximal Rank Conjecture holds on \overline{M}_{22} and \overline{M}_{23} . For a general C , the multiplication map ϕ_L is injective for every $L\in W_{g+3}^6(C).$

• There is an alternative proof of this: Liu-Osserman-Teixidor-Zhang. \bullet This shows that $\sigma({\cal U})\neq \widetilde{{\cal M}}_g$ (recall $\sigma\colon \widetilde{\mathcal G}^6_{g+3}\to \widetilde{\cal M}_g).$ To conclude $[\widetilde{\mathcal{D}}_g]^\text{virt} = [\widetilde{\mathcal{D}}_g]$, one needs to rule out the possibility of a component $\mathcal{U}' \subseteq \mathcal{U}$ of excessive dimension, mapping via σ with positive dimensional fibres onto a divisor in \mathcal{M}_q .

(i) For the general curve $[C] \in \mathcal{M}_a$ the multiplication map $\phi_L \colon \mathsf{Sym}^2 H^0(C, L) \to H^0(C, L^2)$ is injective for all $L \in W_{g+3}^6(C).$

(ii) There exists no divisor $\mathcal Z$ in $\overline{\mathcal M}_q$ such that for each $[C]\in\mathcal Z$ the map ϕ_L is non-injective for infinitely many $L\in W_{g+3}^6(C).$

To prove (ii) it suffices to verify all of the following:

- \bullet $j_{2}^{*}(\mathcal{Z})=0$ and $j_{3}^{*}(\mathcal{Z})\subseteq\big\{ \textsf{Weierstrass divisor}\big\} \cup \big\{ \textsf{Hyperelliptic divisor}\big\}.$
- $\Delta_{2,j} \nsubseteq \mathcal{Z}$, for all j.

Then $[\mathcal{Z}] = 0 \in CH^1(\overline{\mathcal{M}}_g)$, hence $\mathcal Z$ is empty.

Moral: One has to prove the Strong Maximal Rank Conjecture not only generically over $\overline{\mathcal{M}}_q$, but also over all divisors on $\overline{\mathcal{M}}_q$.

The proof of the Strong Maximal Conjecture

Let Γ be the following tropical curve of genus g (chain of loops):

- Choose $R \subseteq K$ a DVR and $X \to K$ a smooth curve of genus q, with a regular model $\mathcal{X} \to R$, such that Γ is the metric graph associated to this degeneration (Locally, $\mathcal{X}\to \operatorname{\mathsf{Spec}}(R)$ is given by $xy=t^{m_i}$ resp. $xy=t^{\ell_i}$ in a neighborhood of the node corresponding to v_i resp. w_i).
- Each point of Γ corresponds to a valuation of $K(X)$. This induces a map

$$
K(X)^* \ni f \mapsto \operatorname{trop}(f) \colon \Gamma \to \mathbb{R}, \ v \mapsto \operatorname{val}_v(f).
$$

• Lelong: div(trop(f)) = $\mathsf{Trop}(\mathsf{div}(f))$, where $\mathsf{Trop} \colon \mathsf{Div}(X) \to \mathsf{Div}(\Gamma)$.

Definition

If $D_X\in \mathsf{Div}(X)$ and $V^{r+1}\subseteq H^0(X,D_X)$ is a linear system, its tropicalization is trop $(V):=\big\{\phi\in PL(\Gamma)$ with $\mathsf{div}(\phi)+\mathsf{Trop}(D_X)\geq 0\big\}.$

• Fact: trop $(W^r_d(X)) \subseteq W^r_d(\Gamma)$.

Theorem

(FJP) Let X/K be a smooth curve of genus $g = 22, 23$ whose minimal skeleton of X^{an} is Γ . Assume the lengths of Γ are general enough. Then $\phi_L \colon \mathrm{Sym}^2 H^0(X,L) \to H^0(X,L^2)$ is injective for all $L \in W_{g+3}^6(X).$

Ingredients in the proof:

 \bullet There is a complete combinatorial description of $W^r_d(\Gamma)$. For each divisor $D' \in \mathsf{Div}(\Gamma)$ with $r(D') \geq r$, there exists a unique break divisor $D \sim D'$ with $D = (d - g) \cdot v_1 + x_1 + \cdots + x_g$, with $x_i \in \text{Loop}_i$.

$$
W^r_d(\Gamma) = \bigcup \bigl\{ \mathbb{T}(\lambda): \lambda \colon [r+1] \times [g-d+r] \to [g] \text{ standard tableau} \bigr\},
$$

where $\mathbb{T}(\lambda)$ is a ρ -dimensional torus. The free coefficients of x_i are those corresponding to $i \notin \text{Im}(\lambda)$. In particular dim $W^r_d(\Gamma) = \rho(g,r,d)$.

• The general point of $\mathbb{T}(\lambda)$ corresponds to a vertex avoiding divisor D, i.e. for each i there exists a unique $D_i \sim D$ with $D_i \geq i \cdot v_1 + (r - i) \cdot w_a$.

 \bullet Suppose $L\in W_{g+3}^6(X)$ is such that $\phi_L\colon \textsf{Sym}^2 H^0(X,L) \to H^0(X,L^2)$ is not injective. Choose a basis f_0,\ldots,f_6 of $H^0(X,L)=H^0(X,D_X)$, such that $\sum_{i,j} a_{ij} f_i f_j = 0$, for $a_{ij} \in K.$ Then for any $v \in \Gamma$

$$
\min_{i,j}\big\{v(a_{ij})+\operatorname{trop}(f_i)(v)+\operatorname{trop}(f_j)(v)\big\}
$$

is attained at least twice.

Definition

The piecewise linear functions ψ_1, \ldots, ψ_n on Γ are tropically dependent if there exist $a_1, \ldots, a_n \in \mathbb{R}$ such that $\min_i \{ \psi_i + a_i \}$ is attained at least twice for each $v \in \Gamma$.

 \bullet Set $\varphi_i := \mathsf{trop}(f_i).$ To prove Strong MRC it suffices to construct a tropical independence between the 28 (explicitly known!) PL functions

 $\{\varphi_i + \varphi_j\}\}_{i \leq j}.$

This is relatively easy in the vertex avoiding case and much harder in the remaining cases...

• Recall $\varphi_i = \text{trop}(f_i) \in PL(\Gamma)$ for $i = 0, \ldots, 6$. In the vertex avoiding case, we can choose the f_i 's such that the φ_i 's are explicit functions. Precisely, the slope $s_k(\varphi_i)$ along the k-th bridge of Γ is given by

$$
s_k(\varphi_i) = i - (g - d + r) + |\{\text{entries } \leq k \text{ in column } r + 1 - i\}|.
$$

• One has to extend this to all divisors on Γ of degree $q+3$ and dimension 6. For $g=23$ the number of combinatorial types in $W^6_{26}(\Gamma)$ equals

$$
\frac{23!}{9!\cdot 8!\cdot 7!} = 350,574,610.
$$

When D_X is no vertex avoiding case, we no longer have the distinguished function $\varphi_i.$ But for small $\rho,$ it suffices to understand the tropicalization of certain subpencils in $H^0(X, D_X).$ The possibilities for the tropicalization of $H^0(X, D_X)$ are divided into cases, according to the combinatorial properties of these pencils. We then construct a tropical independence case-by-case, using a generalization of the algorithm that works for vertex avoiding divisors.

• Construct a tropical independence in the vertex avoiding case for $q = 22$. Take a $(3, 7)$ random tableau (entry 18 is missing):

Depict a tropical independence $\theta = \min_{i,j} {\{\varphi_i + \varphi_j + c_{ij}\}}$. The dots indicate the support of $D' = 2D + \text{div}(\theta)$. Each of the 28 functions $\varphi_i + \varphi_j$ achieves the minimum uniquely on the component of the complement of $\mathrm{Supp}(D')$ labeled ij .

